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Abstract

Previous work on cross-lingual transfer learning in text-to-
speech has shown the effectiveness of fine-tuning phonemic
representations on small amounts of target language data. In
other contexts, phonological features (PFs) have been suggested
as a more suitable input representation than phonemes for shar-
ing acoustic information between languages, for example in
multilingual model training or for code-switching synthesis
where an utterance may contain words from multiple languages.
Starting from a model trained on 14 hours of English, we find
that cross-lingual fine-tuning with 15 minutes of German data
can produce speech with subjective naturalness ratings compa-
rable to a model trained from scratch on 4 hours of German,
using either phonemes or PFs. We also find a modest but sta-
tistically significant improvement in naturalness ratings using
PFs over phonemes when training from scratch on 4 hours of
German.
Index Terms: speech synthesis, low-resource, cross-lingual,
transfer learning

1. Introduction
Phonemes are often used as atomic input symbols to text-to-
speech (TTS) systems as an explicit representation of the pro-
nunciation of input text [1]. This is useful even for large neu-
ral sequence-to-sequence models which have the capacity to
learn implicit pronunciation models directly from text inputs but
which may make mistakes compared to grapheme-to-phoneme
(g2p) conversion models trained on high-quality lexicons [2, 3].
Such large TTS models are typically trained using tens of hours
of audio data with associated text transcriptions, which along-
side the specialist linguistic knowledge required to convert raw
text into phoneme strings are expensive resources to attain and
limit the application of these models to a small proportion of
the world’s 7,000 languages.

For languages with minimal data resources for TTS model
training, we might instead consider fine-tuning an existing
model from another language with much more data available. In
a phoneme-based system, input embeddings for phonemes com-
mon to both languages may be initialised in the target-language
model by copying source-language parameters directly. For
phonemes unique to the target language, however, some ad-
ditional method is required to determine whether any particu-
lar source phoneme may provide a suitable starting point. In
[4], a learned mapping is compared to a unified symbol space
constructed by aligning phoneme symbols in each language us-
ing linguistic expertise, with both approaches achieving similar
naturalness ratings when initialised from a model of 24 hours
of English speech and fine-tuned with 15 minutes of Mandarin
data. These fine-tuning approaches outperform a baseline with

random initialisation of Mandarin phoneme embeddings.While
the learned phoneme mappings were found largely to corre-
spond with expert mappings, some target-language phonemes
went unmapped due to low confidence in the suggested source
phoneme and still had to be initialised from scratch. This fol-
lows from the atomic nature of phonemic input symbols, such
that automatic phoneme mapping is an all-or-nothing approach.

An alternative approach is to decompose phonemic symbols
into sets of distinctive phonological features (PFs) correspond-
ing to articulatory attributes such as tongue position, degree
of closure and voicing [5]. This representation reveals shared
characteristics between phonemes which are not evident when
considering only their atomic symbols in a transcription sys-
tem such as the International Phonetic Alphabet (IPA) [6], and
makes it possible to transfer learned embeddings for individ-
ual features between languages and so compose representations
for target-language phonemes completely unseen during source
model training. Previous work has used PF representations to
share acoustic information between languages during multilin-
gual model training for LSTM-RNN [7, 8] or feed-forward [9]
neural network acoustic models. These models typically in-
clude PFs as part of a wider set of linguistic features, sometimes
including phoneme labels as well, drawn from a unified symbol
space across all training languages. In [7], for example, this data
pooling approach using PFs was found to improve naturalness
ratings for low-resource languages relative to individual voices
trained using only data from those languages.

Our work is closest to that of [10], who use PFs in an
encoder-decoder model with attention based on [11] to enable
zero-shot synthesis of code-switched speech. They showed that
a model trained on one language can be used to generate intel-
ligible speech in a completely unseen target language with no
acoustic training data available. Although they evaluated their
system in an extreme setting with entire utterances comprised
of target-language words, the work was motivated by the need
to handle individual vocabulary items being embedded within
source-language utterances, for example foreign names. We are
directly interested in synthesising full utterances in the target
language, and so apply a similar method in a transfer learn-
ing context, starting from a high-resource English source model
and fine-tuning with either 15 minutes or 4 hours of transcribed
German data. Also similar to [10], we rely on considerable lex-
ical resources for g2p conversion prior to PF expansion, so that
‘low-resource’ in our case refers primarily to this relatively lim-
ited availability of transcribed speech data.

2. Phonological features
We use a set of binary phonological features derived from those
introduced in Chomsky and Halle’s Sound Pattern of English
(SPE) [5]. In this formalism, each phoneme is represented as a



binary vector of 24 features as listed in Table 1. Of these, 19
are a selection of SPE features which adequately describe the
phonetic inventories of English and German, and are essentially
phonological in nature. We also add 5 features to capture as-
pects of input text strings, for example representing the end of
a sentence or other prosodically-relevant punctuation types.

Table 1: SPE-style phonological features.

Category Features

Major class syllabic, consonantal, sonorant
Cavity coronal, anterior, high, low, front, back,

round, nasal, lateral, constricted glottis
Manner continuant, tense, delayed release
Source voice, strident, subglottal pressure
Text space, end of sentence, question, exclama-

tion, other punctuation

Following discussion in [5, pp. 353–355] on the treatment
of glides relative to high vowels, e.g. /j/ vs. /i/, and to ac-
count for syllabic consonants, e.g. /n

"
/ in ‘button’, we replace

the original SPE vocalic feature with syllabic. We also add an
explicit front feature for horizontal tongue body position along-
side back to allow for distinction of central vowels in our feature
system, e.g. open-mid front /E/ [+front, −back] vs. central /3/
[−front,−back]. All other features and mappings between pho-
netic segments and phonological feature vectors follow closely
with those laid out in [5].

For a concrete example, consider our scenario of fine-
tuning a high-resource English model using a small amount of
German data. Both languages’ phonemic inventories include an
unvoiced velar plosive /k/, while only German natively makes
use of an unvoiced velar fricative /x/. These two sounds share
many features, both being produced at the same place of ar-
ticulation in the mouth with the back of the tongue raised and
without vibration of the vocal folds. The main difference be-
tween the two is the degree of closure in the oral cavity, with
transient but complete interruption of airflow in the case of /k/
compared to narrowing of the vocal tract enough to generate
turbulent airflow and constant noise for /x/. If we were only to
consider the atomic symbols /k/ and /x/, for example by con-
verting them to one-hot indices in a neural embedding table,
these similarities may not be apparent, and we would have to
make hard decisions about a possible mapping between these
sounds if we wanted to transfer acoustic information learned on
English data to our German model, as in [4]. In our PF represen-
tation, on the other hand, these two phonemes differ only in the
specification of the feature continuant, which is − for /k/ and
+ for /x/. As such, at the beginning of our fine-tuning regime
the encoder of our German model is initialised with a represen-
tation of /x/ which already contains much information learned
from the English /k/, supplemented by [+continuant] English
phonemes such as /s/. Although we do not test it formally here,
we find these initial representations to produce somewhat intel-
ligible German speech even before any target-language data has
been seen by the model, as in [10], albeit retaining our English
source speaker’s vocal quality and accent.

Our binary feature representation largely overlaps with that
used in PanPhon [12], and differs from the multi-valued fea-
tures used in [10], which map more directly to IPA categories
such as vowel frontness or consonant place. While our feature
set gives a more compact representation, with 24 features vs.

60 in [10] (after conversion to binary vectors), it is perhaps
less interpretable in familiar linguistic terms, for example with
the palatal place of articulation feature in a multi-valued repre-
sentation instead being composed from [+high, −low, −back]
feature specifications in our system. Previous work on phono-
logical feature detection from speech [13] found similar perfor-
mance between an SPE-style binary feature system like ours
and multi-valued features, and [8] showed improvements for
multilingual TTS training using inputs augmented with PFs of
both kinds, suggesting that either formalism may be adequate
for speech processing tasks.

3. Methodology
3.1. Speech data

For our English voice we use part of the M-AILABS Speech
Dataset [14], from the female US speaker mary ann. We only
use recordings from the northandsouth text, as other recordings
from this speaker have a slight reverberant quality. For Ger-
man, we use the CSS10 dataset [15], which provides a single
female speaker. Both corpora are drawn from non-professional
audiobook recordings made as part of the LibriVox project [16].

The CSS10 German corpus comprises 16 hours of speech
sampled at 22.05 kHz, whereas M-AILABS provides 18 hours
sampled at 16 kHz. For our English source models we ran-
domly sample 14 hours (hereafter labelled 840 minutes) from
M-AILABS as a training set and 90 minutes for validation. For
German, we sample training sets of 15 minutes and 4 hours (240
minutes) and validation sets of 5 and 20 minutes respectively to
match the low-resource training setting [17]. A disjoint set of
70 utterances is held out to synthesise listening test stimuli. All
German utterances are downsampled to 16 kHz to match the
English data. Table 2 summarises these data partitions.

Table 2: Dataset summary: total number of utterances, average
length in phonemes and average duration in seconds.

Dataset Utterances Phones Duration

EN-train-840 6975 97 7.23
EN-val-90 754 98 7.16

DE-train-240 1698 102 8.48
DE-val-20 153 94 7.85

DE-train-15 103 106 8.76
DE-val-5 38 98 8.12

DE-test 70 87 7.51

As part of dataset selection, we exclude from the English
data any utterances with raw text transcriptions longer than 200
characters, and from the German any transcripts longer than
170 characters. This only serves to remove outliers from each
dataset, and does not affect the overall distribution of observed
transcript lengths. We also exclude any utterances from M-
AILABS with digits in their raw transcripts, since we found the
normalised transcripts provided did not match the words spo-
ken in several instances. For German test utterances, we select
only those with transcripts ending in some kind of intonational
phrase-final punctuation p ∈ {.!?; }. We do this to increase the
proportion of test stimuli which correspond to complete sen-
tences, given that the CSS10 corpus was created by automati-
cally segmenting long audiobook chapters and is not guaranteed
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Figure 1: German-specific phoneme frequencies for different
subsets of CSS10 data.

to have a one-to-one correspondence between segmented utter-
ances and source text sentences.

When sampling German training subsets, we first sort utter-
ances by how many phonemes they contain which are specific
to German and therefore unseen during English source model
training. We then select utterances starting with the most unseen
phoneme types (out of 9 total) until the target dataset duration
is met, so maximising training examples for these phones in our
low-resource setting. We consider this a valid approach when
some lexical resources are available in the target language, since
prompt selection in this way can be done before recording any
audio. Sorting by unseen phoneme type counts tends to give
a greater increase in relative frequency of the least frequent
phones, whereas sorting by token counts instead boosts the most
frequent unseen phones. Figure 1 shows the effect of this proce-
dure when sampling 15 minutes of German audio; the effect is
reduced for 240 minute subsets, as even random sampling be-
gins to exhaust the supply of the least frequent phones in the
data. Type counts also restrain the tendency to select longer ut-
terances compared to token counts, although as seen in Table
2 German training utterances are still slightly longer on aver-
age than validation utterances, which are not sorted by unseen
phoneme counts before sampling.

3.2. Grapheme-to-phoneme conversion

To encode inputs using phonological features, we first need to
convert input text to IPA phoneme strings. Where possible, we
look up pronunciations in a lexicon: the General American sur-
face form of Combilex [18] for English and the German lexi-
con from MaryTTS [19], mapping their individual phone sets
to IPA symbols. To handle out-of-vocabulary items in each
language we train g2p models from these lexicons using the
Phonetisaurus toolkit [20].

3.3. Model details

We use a modified Tacotron 2 [11] architecture to predict acous-
tic features from text, based on the Mozilla TTS implementa-
tion [21]. Following [10], in our PF-based models we replace
phoneme embeddings with a single linear layer over binary fea-
ture inputs, with matching 512-dimensional hidden represen-
tations. Mozilla TTS retains the reduction factor used in the
original Tacotron [22], predicting r output frames per decoder
step. We had better results training our English source model
with r = 2, predicting frames in pairs rather than individually
as in [11], and use the same reduction factor when fine-tuning
German models. All other architectural details match [11].

We train English source models for 100k steps, using a Rec-

tified Adam optimiser [23] with batch size 32 and learning rate
1 × 10−4. German-only models use the same training hyper-
parameters but run for 60k steps, and fine-tuned models run for
60k steps with a learning rate of 3 × 10−5. In this way, all
German models using the same data split have equal exposure
to training examples in that language, and we can evaluate the
potential of each model and training scheme in matched data
settings. As 240 minutes of speech is much less than is typ-
ically used to train sequence-to-sequence neural TTS models
such as ours, we were concerned to ensure that our German-
only models were adequately trained for fair comparison with
the fine-tuned models which also see 14 hours of English data.
The cutoff at 60k training steps was chosen to enable strong
alignments between input and output timesteps to be learned by
the German-only models, which we found to be the major factor
preventing gross synthesis errors for those systems.

When fine-tuning phonological feature-based models,
which we label F-{15,240}-ft depending on amount of German
data used, all model parameters are copied directly from the
English source model, since PF inputs are completely shared
between the two languages. For phoneme-based models (P-
{15,240}-ft), we copy learned English embeddings directly for
all shared phonemes. For German-specific phonemes, we fol-
low [10] and initialise their embeddings with the closest English
phoneme largely according to PF specifications. This presents a
stronger baseline to test PF systems against compared to leaving
them with untouched random initialisations from the English
pre-training stage. Figure 3(b) indicates the English phonemes
selected to initialise German-specific phoneme embeddings.

We found that stop token prediction did not fare well when
transferring from English to German. Fine-tuning this compo-
nent led to 69% of synthesised utterances from 240-ft systems
and 17% from 15-ft hitting an upper limit on decoder steps,
often producing audible ‘babbling’ for the additional duration
following synthesis of text prompts. This may be caused by
mismatches in utterance-final prosody or other acoustic differ-
ences between English and German, or perhaps the increased
proportion of sentence-fragment utterances in the German data
compared to English. Models trained from scratch on our Ger-
man data didn’t exhibit this issue to the same degree, and re-
initialising stop token projection weights rather than transfer-
ring from English source parameters during fine-tuning largely
addresses the problem. Synthesis of our final 15-ft test stimuli
saw no utterances reaching the maximum decoder steps, while
the proportion in 240-ft systems was reduced to 17%.

We also train a Parallel WaveGAN vocoder [24] on our En-
glish dataset to generate audio from predicted acoustic features
(implementation based on [25]). This model is trained as de-
scribed in [24], for 400k training steps. We find the vocoder to
transfer well to the unseen speaker in our German data with-
out additional fine-tuning (cf. discussion in [26]), though since
vocoder training requires only audio and extracted acoustic fea-
tures and not aligned text transcripts, target-language vocoder
training could be viable even in a low-resource setting.

3.4. Listening tests

We evaluate system performance by conducting MUSHRA-
style listening tests [27]. Each test panel comprises multiple
versions of the same utterance synthesised by each system un-
der test, plus a natural speech reference (recorded by the same
speaker used in training) and vocoded speech using mel spectral
features extracted from the reference (copy synthesis). Natural
speech is presented as an explicit reference and also included as
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Figure 2: MUSHRA naturalness ratings per system. Central
bars indicate median ratings with 99% confidence intervals,
boxes span 25–75% quartiles and whiskers cover 95% of re-
sults for each system. Outliers are marked with +.

a hidden reference among other test samples, randomly ordered.
Given the difficulty in identifying a suitable ‘anchor’ stimulus to
serve as a lower bound for expected quality in speech synthesis,
no such stimulus is included in our tests; each panel therefore
contains 9 audio samples in total. Participants are asked to lis-
ten to the reference and then to provide a rating from 0–100 for
each test sample reflecting how ‘natural’ they sound compared
to the reference. To proceed to the next panel, at least one sam-
ple must be rated at 100 on the naturalness scale.

We recruited 40 participants through Prolific, filtering for
native speakers of German, and conducted listening tests on the
Qualtrics survey platform. Each participant completed 16 pan-
els randomly allocated from our held-out set of 70 test utter-
ances, with each utterance being rated by 9 or 10 participants
in total. The average test duration was 35 minutes, and partici-
pants were paid £5 for their time.

4. Results
4.1. Subjective evaluation

The MUSHRA naturalness ratings for each system gathered
through our subjective listening tests are shown in Figure 2. All
systems present a wide range of participant ratings, including
copy synthesis and even the hidden reference natural speech to
some extent. We did not find any systematic source for this
(e.g. particular stimuli or participants), and attribute it to natu-
ral variation in subjective ratings. Audio samples of test stimuli
are available online.1

We test for significant differences between systems using
double-sided pairwise Wilcoxon signed-rank comparisons, ap-
plying the Bonferroni correction with α = 0.01 (for 28 pair-
wise comparisons, significance is found at p < 0.00036). Both
F-240-ft and P-240-ft are significantly more natural than all
other TTS systems, but there is no significant difference be-
tween them. The two systems fine-tuned with 15 minutes of
German data are not significantly different from each other or
either of the two systems trained on 240 minutes of German data

1https://dan-wells.github.io/pf-tts

only. The German-only system trained with PF inputs (F-240)
is significantly more natural than the equivalent system using
phonemes (P-240).

From these results, we see that by fine-tuning a source
model trained on a high-resource language with as little as 15
minutes of annotated speech data in the target language, it is
possible to match peformance against a system trained on 240
minutes of data from the target language alone. Furthermore,
significant improvements in naturalness of the synthesised voice
can be found by increasing the amount of fine-tuning data to 240
minutes. This is true for both phoneme- and PF-based systems,
confirming previous results on fine-tuning from phoneme inputs
in [4] and effectively extending the method to PFs with their
more flexible and straightforward method for initialising target-
language encoder representations compared to atomic phoneme
mappings. We also find that, in the absence of a source model
in another language, PFs can give a significant boost to natu-
ralness ratings compared to phonemes in a low-resource setting
with 240 minutes of target-language data.

4.2. Input embeddings

To analyse the learned representations of phonemes in our mod-
els, we project input embeddings to two dimensions using
UMAP [28], as shown in Figure 3. We encourage somewhat
more local structure in our projections by reducing the default
number of neighbouring points considered in the reference im-
plementation of UMAP from 15 to 5, based on the intuition
that individual phonemes are typically more closely related to a
small subset of other sounds in any particular phoneme inven-
tory in which they may be found. For clarity in Figures 3(a) EN
P-840 and 3(c) DE P-240, we exclude the randomly-initialised
embeddings of phonemes from the other language (which are
never updated during training for these systems) when project-
ing the embedding spaces. Although UMAP is a stochastic al-
gorithm, we found the projections of our learned embeddings to
be quite consistent across multiple runs.

There is some apparent structure for both phoneme and
PF representations, with vowels and consonants grouped sep-
arately, distinct consonant classes grouped together (plosives,
fricatives and nasals especially) and voiced and unvoiced con-
sonants at the same place of articulation lying close together.
Some higher-level relationships appear important for PF pro-
jections, for example with vowels seemingly arrayed primar-
ily along an axis of rounding and within those [±round] clus-
ters by frontness and height. For consonants, the back feature
also appears to be significant above manner of articulation, with
[+back] plosives /k/ and /g/, fricatives /ç/ and /x/ and the nasal
/N/ tending to be separated from their anterior counterparts.

Interesting differences may be seen in the behaviour of the
two German-specific fricatives, velar /x/ and palatal /ç/, be-
tween the P-240 model trained only on German data and P-240-
ft which was fine-tuned from English phoneme representations.
In P-240, these sounds are grouped closely together with other
fricatives, and are quite apart from any plosive consonants. In
the fine-tuned model, on the other hand, the separation between
fricative and plosive is less clear, specifically with velar plo-
sives /k/ and /g/ appearing close to /x/, while /ç/ is somewhat
separated from the other fricatives along with /S/. Notably, these
two phonemes were initialised from the learned English embed-
dings for /k/ and /S/, respectively. If we consider other German-
specific phonemes and the corresponding English phonemes
from which they were initialised, there is apparently very lit-
tle movement from the English starting points in all cases. This



a

b

d

e

f

h

i
j

k

l

m

n

ps

t

u

v

w

z

ð

ŋ

ɑ
ɔ ə

ɛ
ɜ

ɡ

ɪ

ɫ

ɹ

ʃ

ʊ
ʌ

ʒ

θ
ḷ

ṃ

ṇ

!, .
?

_

(a) EN P-840

a

b
d

e

f

h

i

j

l

mn

p
st

vw

z

ð

ŋ

ɑ

ə

ɛ

ɡ

ɪ

ɫ ʒ

θ

ḷ

ṃṇ

!

,

.
?

_

k

u

ɔ
ɜ

ɹ ʃ

ʊ

ʌ

o

x

y

ç

øœ

ɐ

ʀ

ʏ

(b) DE P-240-ft

a

b
d

e

f

h
ij

k

l
m

n

p

s

t

u
v

z

ŋ

ɔ

ə

ɛ

ɡ

ɪʃ

ʊ

!

,
.

?

_

o

x

y
ç

ø

œ

ɐ

ʀ

ʏ

(c) DE P-240

a

bd

e

f

h

i

j

k

l

mn

p

s

t

u

v

w

z

ð

ŋ

ɑ ɔ
ə

ɛ
ɜ

ɡ

ɪ

ɫ

ɹ

ʃ

ʊʌ

ʒ

θ

ḷ

ṃṇ

! ,. ?
_

o

x

y

ç

ø
œ

ɐ

ʀ

ʏ

(d) EN F-840

a

b

d

e

f

h

i
j k

l m
n

p

s
t

u

v

w

zð

ŋ

ɑ

ɔ

ə

ɛ

ɜ ɡɪ

ɫ

ɹ

ʃ

ʊ
ʌ

ʒ
θ

ḷ

ṃṇ

!

,

.
?
_

o

x

y

ç

ø
œ

ɐ ʀ
ʏ

(e) DE F-240-ft

a
b

d

e

f

h

i

j

k

l

mn
p

s

t

u

v

w

z

ð
ŋ

ɑ

ɔ

ə

ɛ

ɜ

ɡ

ɪ ɫ

ɹ

ʃ

ʊ

ʌ

ʒ

θ

ḷ

ṃṇ

!

,

.?

_

o

x

y

ç

øœ

ɐ

ʀ

ʏ

(f) DE F-240

Figure 3: UMAP projections of input symbol embeddings for English and German models using phonemes (a–c) and PFs (d–f).
German-specific phonemes are marked by circular outlines, and English phonemes used to initialise their representations in (b) by
squares. Unseen German phonemes are included in (d) to show that novel combinations of PFs also produce sensible representations.

could be a result of the high-dimensional (512) phoneme em-
bedding space used: in such a large representational space,
it may be possible to adapt a plosive /k/ to sound adequately
like its corresponding fricative /x/ by making small perturba-
tions in many dimensions. This high-dimensional perturbation
might not then be preserved during low-dimensional projection
as we have done here. By comparison, these phonemes pat-
tern consistently across both DE models trained from scratch
and through fine-tuning when using PFs, as well as in EN F-
840, where they were completely unseen during training. This
supports the notion that PFs should be a stable representation
cross-linguistically, backing up observed improvements in mul-
tilingual training contexts in [7, 8].

5. Conclusion
In this work, we experimented with phonological feature vector
inputs to TTS models in a transfer learning context. We con-
firmed previous results which showed that cross-lingual fine-
tuning is a viable method for training synthetic voices with lim-
ited amounts of target language data, with source models trained
on 14 hours of English being adapted using 15 minutes of Ger-
man data matching the subjective naturalness ratings of models
trained from scratch using 4 hours of German data only. We
found this result to hold for PFs as well as phonemes, but con-
sider PFs to bring practical benefits with regard to ease of pa-
rameter sharing in this transfer learning context. We also found

a small but statistically significant improvement in naturalness
ratings when training a voice from scratch on 4 hours of German
data using PFs over phonemes.

While the models trained here may be called ‘low-resource’
in terms of annotated speech data available in the target lan-
guage, we still rely on considerable lexical resources for
grapheme-to-phoneme conversion of input text before we can
expand IPA symbols to PFs. Future work may consider the
application of recent approaches to multilingual g2p systems
[29] as part of this low-resource pipeline, or make use of ad-
ditional pre-existing linguistic resources such as the PHOIBLE
phonological inventory database [30]. Following our analysis
of learned input embeddings, we would also like to investigate
more constrained embedding spaces to encourage more effi-
cient parameter sharing, especially for phonemes which remain
a common choice of input representation for TTS.
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